At what rate does the average person oxidize alcohol?

In order to continue enjoying our site, we ask that you confirm your identity as a human. Thank you very much for your cooperation.

1. Khanna JM, Israel Y. Ethanol. Metabolism. Int. Review of Physiol. 1980;21:275–315. [PubMed] [Google Scholar]

2. Crabb DW, Bosron WF, Li TK. Ethanol Metabolism. Pharmac. Ther. 1987;34:59–73. [PubMed] [Google Scholar]

3. Kennedy NP, Tipton KF. Ethanol Metabolism and Alcoholic Liver Disease. Essays in Biochemistry. 1990;25:137–195. [PubMed] [Google Scholar]

4. Riveros-Rosas H, Julian-Sanchez A, Pina E. Enzymology of Ethanol and Acetaldehyde Metabolism in Mammals. Arch. Med. Res. 1997;28:453–471. [PubMed] [Google Scholar]

5. Kalant H. Pharmacokinetics of ethanol: Absorption, Distribution and Elimination. In: Begleiter H, Kissin B, editors. The Pharmacology of Alcohol and Alcohol Dependence. Oxford University Press; 1996. pp. 15–58. [Google Scholar]

6. Cederbaum A. Metabolism of Ethanol , Acetaldehyde and Condensation Products. In: Begletier H, Kissin B, editors. The Pharmacology of Alcohol and Alcohol Dependence. Oxford University Press; 1996. pp. 59–109. [Google Scholar]

7. Lands WE. A Review of Alcohol Clearance in Humans. Alcohol. 1998;15:147–160. [PubMed] [Google Scholar]

8. Zakhari S. Overview: How is alcohol metabolized by the body. Alcohol Res and Health. 2006;29:245–254. [PMC free article] [PubMed] [Google Scholar]

9. Zakhari S, Li TK. Determinants of alcohol use and abuse: impact of quantity and frequency patterns on liver disease. Hepatology. 2007;46:2032–2039. [PubMed] [Google Scholar]

10. Frezza M, Di Padova C, Pozzato G, et al. High blood alcohol levels in women. New Engl. J. Med. 1990;322:95–99. [PubMed] [Google Scholar]

11. Cole-Harding S, Wilson JR. Ethanol metabolism in men and women. J. Studies Alc. 1987;48:380–387. [PubMed] [Google Scholar]

12. Norberg A, Jones WA, Hahn RG, et al. Role of variability in explaining ethanol pharmacokinetics. Clin. Pharmacokinet. 2003;42:1–31. [PubMed] [Google Scholar]

13. Wilkinson PK, Sedman AJ, Sakmar E, et al. Pharmacokinetics of ethanol after oral administration in the fasting state. J. Pharmacokinet. and Biopharm. 1977;5:207–224. [PubMed] [Google Scholar]

14. Baraona E, Abittan CS, Dohmen K, et al. Gender differences in pharmacokinetics of alcohol. Alcoholism: Clin Exp Res. 2001;25:502–507. [PubMed] [Google Scholar]

15. Kwo PY, Ramchandanl VA, O'Connor S, et al. Gender differences in alcohol metabolism: relationship to liver volume and effect of adjusting for body mass. Gastroent. 1998;115:1552–1557. [PubMed] [Google Scholar]

16. DiPadova C, Worner TM, Julkunen RJK, et al. Effects of fasting and chronic alcohol consumption on the first pass metabolism of ethanol. Gastroent. 1987;92:1169–1173. [PubMed] [Google Scholar]

17. Levitt MD, Furne J, DeMaster E. First pass metabolism of ethanol is negligible in rat gastric mucosa. Alcoholism: Clin Exp Res. 1997;21:293–297. [PubMed] [Google Scholar]

18. Lee SL, Chau GY, Yao CT, et al. Functional assessment of human alcohol dehydrogenase family in ethanol metabolism: Significance of first-pass metabolism. Alcoholism: Clin. Exp. Res. 2006;30:1132–1142. [PubMed] [Google Scholar]

19. Morgan MY, Levine JA. Alcohol and nutrition. Proc. Nutr. Soc. 1988;47:85–98. [PubMed] [Google Scholar]

20. Lieber CS. Perspectives: do alcohol calories count? Am. J. Clin. Nutr. 1991;54:976–982. [PubMed] [Google Scholar]

21. Lands WEM. Alcohol and energy intake. Am. Soc. Clin. Nutr. 1995;62:1101S–1106S. [PubMed] [Google Scholar]

22. Addolorato G, Capristo E, Greco AL, et al. Energy expenditure, substrate oxidation and body composition in subjects with chronic alcoholism: new findings from metabolic assessment. Alcoholism: Clin Exp Res. 1997;21:962–967. [PubMed] [Google Scholar]

23. Salaspuro MP, Lieber CS. Non-uniformity of blood ethanol elimination: its exaggeration after chronic consumption. Annals Clin. Res. 1978;10:294–297. [PubMed] [Google Scholar]

24. Matsumoto H, Fukui Y. Pharmacokinetics of ethanol: a review of the methodology. Addiction Biol. 2002;7:5–14. [PubMed] [Google Scholar]

25. Holford NG. Clinical pharmacokinetics of ethanol. Clin. Pharmacokinet. 1987;13:273–292. [PubMed] [Google Scholar]

26. Ramchandani VA, Bostron WF, Li TK. Research advances in ethanol metabolism. Pathol. Biol. 2001;49:676–682. [PubMed] [Google Scholar]

27. Reed TE, Kalant H, Gibbins RJ, et al. Alcohol and acetaldehyde metabolism in Caucasians, Chinese and Amerinds. Canadian Med. Assoc. J. 1976;6:851–855. [PMC free article] [PubMed] [Google Scholar]

28. Bennion LJ, Li TK. Alcohol metabolism in American Indians and Whites. New Engl. J. Med. 1976;294:9–13. [PubMed] [Google Scholar]

29. Passanati GT, Wolff CA, Vesell E. Reproductibility of individual rates of ethanol metabolism in fasting subjects. Clin Pharmacol Ther. 1990;47:389–396. [PubMed] [Google Scholar]

30. Wissel PS. Dietary influences on ethanol metabolism. Drug-Nutrient Interact. 1987;5:161–168. [PubMed] [Google Scholar]

31. Ramchandani VA, Kwo PY, Li TK. Effect of food and food composition on alcohol elimination rates in healthy men and women. J. Clin. Pharmacol. 2001;41:1345–1350. [PubMed] [Google Scholar]

32. Edenberg H. The genetics of alcohol metabolism. Alcohol Res. and Health. 2007;30:5–13. [PMC free article] [PubMed] [Google Scholar]

33. Crabb DW. Ethanol oxidizing enzymes: Roles in alcohol metabolism and alcoholic lliver disease. Prog. Liver Dis. 1995;13:151–172. [PubMed] [Google Scholar]

34. Bosron W, Ehrig T, Li TK. Genetic factors in alcohol metabolism and alcoholism. Semin. Liver Dis. 1993;13:126–135. [PubMed] [Google Scholar]

35. Eriksson CJP, Fukunaga T, Sarkola T, et al. Functional relevance of human ADH polymorphism. Alcoholism: Clin Exp. Res. 2001;25:157S–163S. [PubMed] [Google Scholar]

36. Zintzaras E, Stefanidis I, Santos M, et al. Do alcohol-metabolizing enzyme gene polymorphisms increase the risk of alcoholism and alcoholic liver disease. Hepatology. 2006;43:352–361. [PubMed] [Google Scholar]

37. Kimura M, Miyakawa T, Matsushita S, et al. Gender differences in the effects of ADHIB and ALDH2 polymorphisms in alcoholism. Alcoholism: Clin. Exp. Res. 2011;35:1923–1927. [PubMed] [Google Scholar]

38. Meijer AJ, Van Wuerkom GM, Williamson JR, et al. Rate-limiting factors in the oxidation of ethanol by isolated rat liver cells. Biochem. J. 1975;150:205–209. [PMC free article] [PubMed] [Google Scholar]

39. Cederbaum AI, Dicker E, Rubin E. Transfer and reoxidation of reducing equivalents as the rate-limiting steps in the oxidation of ethanol by liver cells isolated from fed and fasted rats. Arch. Biochem. Biophys. 1977;183:638–646. [PubMed] [Google Scholar]

40. Gordon ER. The effect of chronic consumption of ethanol on the redox state of the rat liver. Canadian J. Biochem. 1972;50:949–957. [PubMed] [Google Scholar]

41. Stubbs M, Veech RL, Krebs HA. Control of the redox of the nicotinamide adenine-dinucleotide couple in rat liver cytoplasm. Biochem. J. 1972;126:59–65. [PMC free article] [PubMed] [Google Scholar]

42. Veech RL, Guynn R, Veloso D. The time course of the effects of ethanol in the redox and phosphorylation states of rat liver. Biochem. J. 1972;127:387–397. [PMC free article] [PubMed] [Google Scholar]

43. Szabo G, Hoek JB, Darley-Usmar V, et al. Alcohol and mitochondrial metabolism: at the crossroads of life and death. Alcoholism: Clin Exp Res. 2005;29:1749–1752. [PubMed] [Google Scholar]

44. Teplova VV, Belosludtsev KN, Belosludtseva NV, et al. Role of mitochondria in hepatotoxicity of ethanol. Cell Biophys. 2010;55:951–958. [Google Scholar]

45. Cederbaum AI, Lieber CS, Beattie DS, et al. Characterization of shuttle mechanisms in the transport of reducing equivalents into mitochondria. Arch. Biochem. Biophys. 1973;158:763–781. [PubMed] [Google Scholar]

46. Dawson AG. Rapid oxidation of NADH via the reconstituted malate-aspartate shuttle in systems containing mitochondrial and soluble fractions of rat liver: implications for ethanol metabolism. Biochem. Pharmacol. 1982;31:2733–2738. [PubMed] [Google Scholar]

47. Cederbaum AI, Lieber CS, Toth A, et al. Effect of ethanol and fat on the transport of reducing equivalents into rat liver mitochondria. J. Biol. Chem. 1973;248:4977–4986. [PubMed] [Google Scholar]

48. Sugano T, Handler JA, Yoshihara H, et al. Acute and chronic ethanol treatment in vivo increases malate-aspartate shuttle capacity in perfused rat liver. J. Biol. Chem. 1990;265:21549–21553. [PubMed] [Google Scholar]

49. Zimatkin SM, Liopo AV, Deitrich RA. Distribution and kinetics of ethanol metabolism in rat brain. Alcoholism: Clin. Exp. Res. 1998;22:1623–1627. [PubMed] [Google Scholar]

50. Thurman RG, Handler JA. New perspectives in catalase-dependent ethanol metabolism. Drug Metab. Rev. 1989;20:679–688. [PubMed] [Google Scholar]

51. Deng XS, Deitrich RA. Putative role of brain acetaldehyde in ethanol addiction. Current Drug Abuse Reviews. 2008;1:3–8. [PMC free article] [PubMed] [Google Scholar]

52. Guengerich FR. Mammalian cytochrome P450. CRC Press Boca Raton; 1987. [Google Scholar]

53. Nelson DR, Koymans L, Kamataki T, et al. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogen. 1996;6:1–42. [PubMed] [Google Scholar]

54. Lewis DFV, Pratt JM. The P450 catalytic cycle and oxygenation mechanism. Drug Metab. Rev. 1998;30:739–786. [PubMed] [Google Scholar]

55. Lieber CS. Cytochrome P4502E1: its physiological and pathological role. Physiol. Rev. 1997;77:517–544. [PubMed] [Google Scholar]

56. Caro AA, Cederbaum AI. Oxidative stress, toxicology and pharmacology of CYP2E1. Annu Rev. Pharmacol. Toxicol. 2004;44:27–42. [PubMed] [Google Scholar]

57. Bolt M, Koos PH, Their H. The cytochrome P450 isoenzyme CYP2E1 in the biological processing of industrial chemicals. Int. Arch. Occup. Environ. Health. 2003;76:174–185. [PubMed] [Google Scholar]

58. Koop DP. Oxidative and reductive metabolism by cytochrome P4502E1. FASEB J. 1992;6:724–730. [PubMed] [Google Scholar]

59. Gonzalez FJ. Roles of cytochromes P450 in chemical toxicity and oxidative stress:studies with CYP2E1. Mutat. Res. 2005;569:101–110. [PubMed] [Google Scholar]

60. Lu Y, Cederbaum AI. CYP2E1 and oxidative liver injury by alcohol. Free Rad. Biol. Med. 2008;44:723–738. [PMC free article] [PubMed] [Google Scholar]

61. Bernstein J, Videla L, Israel Y. Role of the sodium pump in the regulation of liver metabolism in experimental alcoholism. Ann NY Acad. Sci. 1974;242:560–572. [PubMed] [Google Scholar]

62. Cederbaum AI, Dicker E, Lieber CS, et al. Ethanol oxidation by isolated hepatocytes from ethanol-treated and control rats; factor contributing to the metabolic adaptation after chronic ethanol consumption. Biochem. Pharmacol. 1978;27:7–15. [PubMed] [Google Scholar]

63. Videla L, Israel Y. Factors that modify the metabolism of ethanol in rat liver and adaptive changes produced by its chronic administration. Biochem. J. 1970;118:275–281. [PMC free article] [PubMed] [Google Scholar]

64. Bradford BU, Rusyn I. Swift increase in alcohol metabolism (SIAM): understanding the phenomenon of hypermetabolism in liver. Alcohol. 2005;35:13–17. [PubMed] [Google Scholar]

65. Kashiwagi T, Ji S, Lemasters JJ, et al. Rates of alcohol dehydrogenase-dependent ethanol metabolism in periportal and pericentral regions of the perfused rat liver. Mol. Pharmacol. 1982;21:438–443. [PubMed] [Google Scholar]

66. Vaananen H, Lindros KO. Comparison of ethanol metabolism in isolated periportal or perivenous hepatocytes: effects of chronic ethanol treatment. Alcoholism: Clin. Exp. Res. 1985;9:315–321. [PubMed] [Google Scholar]

67. Chen L, Sidner RA, Lumeng L. Distribution of alcohol dehydrogenase and the low km form of aldehyde dehydrogenase in isolated perivenous and periportal hepatocytes in rats. Alcoholism: Clin. Exp. Res. 1992;16:23–29. [PubMed] [Google Scholar]

68. Seidl S, Wurst FM, Alt A. Ethyl glucuronide- a biological marker for recent alcohol consumption. Addict. Biol. 2001;6:205–212. [PubMed] [Google Scholar]

69. Laposata M. Fatty acid ethyl esters: non oxidative metabolites of ethanol. Addict. Biol. 1998;3:5–14. [PubMed] [Google Scholar]

70. Agarwal DP, Goedde HW. Human aldehyde dehydrogenases: their role in alcoholism. Alcohol. 1989;6:517–523. [PubMed] [Google Scholar]

71. Goedde HW, Agarwal DP. Pharmacogenetics of aldehyde dehydrogenase. Pharmac. Ther. 1990;45:345–371. [PubMed] [Google Scholar]

72. Lindros KO, Eriksson CJP. The role of acetaldehyde in the action of ethanol. Finnish Foundation Stud. Alc. 1975;23 [Google Scholar]

73. Niemela O. Acetaldehyde adducts of proteins: diagnostic and pathogenic implications in diseases caused by excessive alcohol consumption. Scand. J. Clin lab Invest. 1993;53:45–54. [PubMed] [Google Scholar]

74. Sorrell MF, Tuma DJ. Hypothesis: alcoholic liver injury and the covalent binding of acetaldehyde. Alcoholism: Clin. Exp. Res. 1989;9:306–309. [PubMed] [Google Scholar]

75. Sophos NA, Vasiliou V. Aldehyde dehydrogenase gene superfamily: the 2002 update. Chemico Biolog. Interact. 2002;143–144:5–22. [PubMed] [Google Scholar]


Page 2

Kinetic constants for human liver ADH isoforms

Constant α α β1β1β2β2β3β3γ1γ1γ2γ2 π π
KmNAD+ μM137.41805307.98.714
Km ethanol, mM4.20.0490.942410.6334
Ki 4-methylpyrazole, μM1.10.13-2.10.1-2000
Vmax min−1279.2400300873520
pH-optimum10.510.58.57.010.51010.5