Describe how a molecule of dna is replicated. enter your answer in the space provided.

 

DNA is essentially a storage molecule. It contains all of the instructions a cell needs to sustain itself. These instructions are found within genes, which are sections of DNA made up of specific sequences of nucleotides. In order to be implemented, the instructions contained within genes must be expressed, or copied into a form that can be used by cells to produce the proteins needed to support life.

The instructions stored within DNA are read and processed by a cell in two steps: transcription and translation. Each of these steps is a separate biochemical process involving multiple molecules. During transcription, a portion of the cell's DNA serves as a template for creation of an RNA molecule. (RNA, or ribonucleic acid, is chemically similar to DNA, except for three main differences described later on in this concept page.) In some cases, the newly created RNA molecule is itself a finished product, and it serves an important function within the cell. In other cases, the RNA molecule carries messages from the DNA to other parts of the cell for processing. Most often, this information is used to manufacture proteins. The specific type of RNA that carries the information stored in DNA to other areas of the cell is called messenger RNA, or mRNA.

How does transcription proceed?

Transcription begins when an enzyme called RNA polymerase attaches to the DNA template strand and begins assembling a new chain of nucleotides to produce a complementary RNA strand. There are multiple types of types of RNA. In eukaryotes, there are multiple types of RNA polymerase which make the various types of RNA. In prokaryotes, a single RNA polymerase makes all types of RNA. Generally speaking, polymerases are large enzymes that work together with a number of other specialized cell proteins. These cell proteins, called transcription factors, help determine which DNA sequences should be transcribed and precisely when the transcription process should occur.

Initiation

Strand elongation

Three of the four nitrogenous bases that make up RNA — adenine (A), cytosine (C), and guanine (G) — are also found in DNA. In RNA, however, a base called uracil (U) replaces thymine (T) as the complementary nucleotide to adenine (Figure 3). This means that during elongation, the presence of adenine in the DNA template strand tells RNA polymerase to attach a uracil in the corresponding area of the growing RNA strand (Figure 4).

Interestingly, this base substitution is not the only difference between DNA and RNA. A second major difference between the two substances is that RNA is made in a single-stranded, nonhelical form. (Remember, DNA is almost always in a double-stranded helical form.) Furthermore, RNA contains ribose sugar molecules, which are slightly different than the deoxyribosemolecules found in DNA. As its name suggests, ribose has more oxygen atoms than deoxyribose.

Termination and editing

What's next for the RNA molecule?

DNA replication is the process by which DNA makes a copy of itself during cell division.

  1. The first step in DNA replication is to ‘unzip’ the double helix structure of the DNA molecule.
  2. This is carried out by an enzyme called helicase which breaks the hydrogen bonds holding the complementary bases of DNA together (A with T, C with G).
  3. The separation of the two single strands of DNA creates a ‘Y’ shape called a replication ‘fork’. The two separated strands will act as templates for making the new strands of DNA.
  4. One of the strands is oriented in the 3’ to 5’ direction (towards the replication fork), this is the leading strand. The other strand is oriented in the 5’ to 3’ direction (away from the replication fork), this is the lagging strand. As a result of their different orientations, the two strands are replicated differently:

Describe how a molecule of dna is replicated. enter your answer in the space provided.

An illustration to show replication of the leading and lagging strands of DNA.
Image credit: Genome Research Limited

Leading Strand:

  1. A short piece of RNA called a primer (produced by an enzyme called primase) comes along and binds to the end of the leading strand. The primer acts as the starting point for DNA synthesis.
  2. DNA polymerase binds to the leading strand and then ‘walks’ along it, adding new complementary nucleotide bases (A, C, G and T) to the strand of DNA in the 5’ to 3’ direction.
  3. This sort of replication is called continuous.

Lagging strand:

  1. Numerous RNA primers are made by the primase enzyme and bind at various points along the lagging strand.
  2. Chunks of DNA, called Okazaki fragments, are then added to the lagging strand also in the 5’ to 3’ direction.
  3. This type of replication is called discontinuous as the Okazaki fragments will need to be joined up later.
  1. Once all of the bases are matched up (A with T, C with G), an enzyme called exonuclease strips away the primer(s). The gaps where the primer(s) were are then filled by yet more complementary nucleotides.
  2. The new strand is proofread to make sure there are no mistakes in the new DNA sequence.
  3. Finally, an enzyme called DNA ligase seals up the sequence of DNA into two continuous double strands.
  4. The result of DNA replication is two DNA molecules consisting of one new and one old chain of nucleotides. This is why DNA replication is described as semi-conservative, half of the chain is part of the original DNA molecule, half is brand new.
  5. Following replication the new DNA automatically winds up into a double helix.

Can you spare 5-8 minutes to tell us what you think of this website? Open survey

DNA is the genetic material that defines every cell. Before a cell duplicates and is divided into new daughter cells through either mitosis or meiosis, biomolecules and organelles must be copied to be distributed among the cells. DNA, found within the nucleus, must be replicated in order to ensure that each new cell receives the correct number of chromosomes. The process of DNA duplication is called DNA replication. Replication follows several steps that involve multiple proteins called replication enzymes and RNA. In eukaryotic cells, such as animal cells and plant cells, DNA replication occurs in the S phase of interphase during the cell cycle. The process of DNA replication is vital for cell growth, repair, and reproduction in organisms.

  • Deoxyribonucleic acid, commonly known as DNA, is a nucleic acid that has three main components: a deoxyribose sugar, a phosphate, and a nitrogenous base.
  • Since DNA contains the genetic material for an organism, it is important that it be copied when a cell divides into daughter cells. The process that copies DNA is called replication.
  • Replication involves the production of identical helices of DNA from one double-stranded molecule of DNA.
  • Enzymes are vital to DNA replication since they catalyze very important steps in the process.
  • The overall DNA replication process is extremely important for both cell growth and reproduction in organisms. It is also vital in the cell repair process.

DNA or deoxyribonucleic acid is a type of molecule known as a nucleic acid. It consists of a 5-carbon deoxyribose sugar, a phosphate, and a nitrogenous base. Double-stranded DNA consists of two spiral nucleic acid chains that are twisted into a double helix shape. This twisting allows DNA to be more compact. In order to fit within the nucleus, DNA is packed into tightly coiled structures called chromatin. Chromatin condenses to form chromosomes during cell division. Prior to DNA replication, the chromatin loosens giving cell replication machinery access to the DNA strands.

Science Photo Library / Getty Images

Before DNA can be replicated, the double stranded molecule must be “unzipped” into two single strands. DNA has four bases called adenine (A), thymine (T), cytosine (C) and guanine (G) that form pairs between the two strands. Adenine only pairs with thymine and cytosine only binds with guanine. In order to unwind DNA, these interactions between base pairs must be broken. This is performed by an enzyme known as DNA helicase. DNA helicase disrupts the hydrogen bonding between base pairs to separate the strands into a Y shape known as the replication fork. This area will be the template for replication to begin.

DNA is directional in both strands, signified by a 5' and 3' end. This notation signifies which side group is attached the DNA backbone. The 5' end has a phosphate (P) group attached, while the 3' end has a hydroxyl (OH) group attached. This directionality is important for replication as it only progresses in the 5' to 3' direction. However, the replication fork is bi-directional; one strand is oriented in the 3' to 5' direction (leading strand) while the other is oriented 5' to 3' (lagging strand). The two sides are therefore replicated with two different processes to accommodate the directional difference.

The leading strand is the simplest to replicate. Once the DNA strands have been separated, a short piece of RNA called a primer binds to the 3' end of the strand. The primer always binds as the starting point for replication. Primers are generated by the enzyme DNA primase.

DNA polymerases (blue) attach themselves to the DNA and elongate the new strands by adding nucleotide bases.

Enzymes known as DNA polymerases are responsible creating the new strand by a process called elongation. There are five different known types of DNA polymerases in bacteria and human cells. In bacteria such as E. coli, polymerase III is the main replication enzyme, while polymerase I, II, IV and V are responsible for error checking and repair. DNA polymerase III binds to the strand at the site of the primer and begins adding new base pairs complementary to the strand during replication. In eukaryotic cells, polymerases alpha, delta, and epsilon are the primary polymerases involved in DNA replication. Because replication proceeds in the 5' to 3' direction on the leading strand, the newly formed strand is continuous.

The lagging strand begins replication by binding with multiple primers. Each primer is only several bases apart. DNA polymerase then adds pieces of DNA, called Okazaki fragments, to the strand between primers. This process of replication is discontinuous as the newly created fragments are disjointed.

Once both the continuous and discontinuous strands are formed, an enzyme called exonuclease removes all RNA primers from the original strands. These primers are then replaced with appropriate bases. Another exonuclease “proofreads” the newly formed DNA to check, remove and replace any errors. Another enzyme called DNA ligase joins Okazaki fragments together forming a single unified strand. The ends of the linear DNA present a problem as DNA polymerase can only add nucleotides in the 5′ to 3′ direction. The ends of the parent strands consist of repeated DNA sequences called telomeres. Telomeres act as protective caps at the end of chromosomes to prevent nearby chromosomes from fusing. A special type of DNA polymerase enzyme called telomerase catalyzes the synthesis of telomere sequences at the ends of the DNA. Once completed, the parent strand and its complementary DNA strand coils into the familiar double helix shape. In the end, replication produces two DNA molecules, each with one strand from the parent molecule and one new strand.

DNA polymerase molecule.

DNA replication would not occur without enzymes that catalyze various steps in the process. Enzymes that participate in the eukaryotic DNA replication process include:

  • DNA helicase - unwinds and separates double stranded DNA as it moves along the DNA. It forms the replication fork by breaking hydrogen bonds between nucleotide pairs in DNA.
  • DNA primase - a type of RNA polymerase that generates RNA primers. Primers are short RNA molecules that act as templates for the starting point of DNA replication.
  • DNA polymerases - synthesize new DNA molecules by adding nucleotides to leading and lagging DNA strands.
  • Topoisomerase or DNA Gyrase - unwinds and rewinds DNA strands to prevent the DNA from becoming tangled or supercoiled.
  • Exonucleases - group of enzymes that remove nucleotide bases from the end of a DNA chain.
  • DNA ligase - joins DNA fragments together by forming phosphodiester bonds between nucleotides.

Replication of DNA.

Francis Leroy / Getty Images

DNA replication is the production of identical DNA helices from a single double-stranded DNA molecule. Each molecule consists of a strand from the original molecule and a newly formed strand. Prior to replication, the DNA uncoils and strands separate. A replication fork is formed which serves as a template for replication. Primers bind to the DNA and DNA polymerases add new nucleotide sequences in the 5′ to 3′ direction.

This addition is continuous in the leading strand and fragmented in the lagging strand. Once elongation of the DNA strands is complete, the strands are checked for errors, repairs are made, and telomere sequences are added to the ends of the DNA.

  • Reece, Jane B., and Neil A. Campbell. Campbell Biology. Benjamin Cummings, 2011.