Was the Roman Warm Period global

Europe has almost certainly experienced warmer summers in the last three decades than at any other time since the Roman empire, according to a study published on Friday in the Environmental Research Letters journal.

Since 1986, mean summer temperatures have been about 1.3C hotter than they were two millennia ago, while heatwaves have been longer, more frequent and more persistent, the study says.

The paper was compiled by 40 prominent academics, using tree-ring analysis, climate modelling and historical documentary evidence from the notes of doctors, priests and monks.

“This degree of warming is unprecedented in the last two thousand years,” Professor Jürg Luterbacher, the report’s coordinator, told the Guardian. “It is exceptionally high and cannot be explained by natural variability, tropical volcanoes or solar changes. It is because of anthropogenic [manmade] climate change.”

While the paper offers new insights into the effects that volcanic eruptions, solar variability and land use change can have on climate, its range is limited to periods between June and August.

Much of the data for the period before 755 comes from analysis of tree rings and density information from three pine tree species in Finland, Austria and Sweden. These trees grow in warm weather but are dormant in the cold, meaning that their rings, density – and the outside temperatures – can only be measured in summer.

After 755, more pine trees in countries such as Switzerland, France and eventually Spain become accessible to the scientists, allowing spatial variations – or regional differences – to be more accurately recorded, and comparisons to be drawn.

“The anomalous recent warmth is particularly clear in southern Europe, where variability is generally smaller, and where the signal of anthropogenic climate change is expected to emerge earlier,” the report says.

The report finds evidence that past swings in summer temperatures were larger than previously thought. It says that summers were warmer between Roman times and the third century, before cooling until the 7th century.

A warmer medieval interlude was then punctured by a ‘Little Ice Age’ that lasted from the 14th to the 19th centuries. As the 20th century dawned, the effects of climate change became progressively more pronounced.

“Summer temperatures during the last 30 years have been anomalously high and we find no evidence of any period in the last 2,000 years that has been so warm,” the paper says.

  1. Giorgi, F. Climate change hot-spots. Geophysical Research Letters 33, L08707 (2006).

    ADS  Google Scholar 

  2. Corte-Real, J., Zhang, X. & Wang, X. Downscaling GCM information to regional scales: A non-parametric multivariate regression approach. Climate Dynamics 11, 413–42 (1995).

    ADS  Google Scholar 

  3. Xoplaki E. Climate Variability over the Mediterranean. Ph.D. Thesis, University of Bern, 193 pp. Available at, http://sinus.unibe.ch/klimet/docs/phd_xoplaki.pdf (2002).

  4. Lionello, P., Malanotte-Rizzoli, P. & Boscolo, R. (Eds). Mediterranean Climate Variability. Elsevier, pp 438. ISBN: 0-444-52170-4, (2006).

  5. Grauel, A. L., Goudeau, M. L. S., de Lange, G. J. & Bernasconi, S. M. Climate of the past 2500 years in the Gulf of Taranto, central Mediterranean Sea: a high-resolution climate reconstruction based on δ18O and δ13C of Globigerinoides ruber (white). The Holocene 23, 1440–1446 (2013).

    ADS  Google Scholar 

  6. Goudeau, M. L. S. et al. Seasonality variations in the Central Mediterranean during climate change events in the Late Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 418, 304–318 (2015).

    ADS  Google Scholar 

  7. Lirer, F. et al. Planktonic foraminifera as bio-indicators for monitoring the climatic changes that have occurred over the past 2000 years in the southeastern Tyrrhenian Sea. Integrative Zoology 9, 542–554 (2014).

    PubMed  Google Scholar 

  8. Bonomo, S. et al. Reworked Coccoliths as runoff proxy for the last 400 years: The case of Gaeta Gulf (central Tyrrhenian Sea, Central Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 459, 15–28 (2016).

    ADS  Google Scholar 

  9. Margaritelli, G. et al. Marine response to climate changes during the last five millennia in the central Mediterranean Sea. Global and Planetary Change 142, 53–72 (2016).

    ADS  Google Scholar 

  10. Margaritelli, G. et al. Climatic variability over the last 3000 years in the central – western Mediterranean Sea (Menorca Basin) detected by planktonic foraminifera and stable isotope records. Global and Planetary Change 169, 179–187 (2018).

    ADS  Google Scholar 

  11. Jalali, B., Sicre, M. A., Bassetti, M. A. & Kallel, N. Holocene climate variability in the North-western Mediterranean Sea (Gulf of Lions). Climate of the Past 12, 91–101 (2016).

    ADS  Google Scholar 

  12. Jalali, B. et al. High-resolution Holocene climate and hydrological variability from two major Mediterranean deltas (Nile and Rhone). The Holocene 1–11 (2017).

  13. Labuhn, I., Finné, M., Izdebski, A., Roberts, N., Woodbridge, J. Climatic Changes and Their Impacts in the Mediterranean during the First Millennium AD. Environment and Society in the Long Late Antiquity, (Late Antique Archaeology 12), (Leiden 2018), Adam Izdebski and Michael Mulryan (eds), 65–88 (2018).

  14. Roberts, N., Brayshaw, D., Kuzucuoglu, C., Perez, R. & Sadori, L. The mid-Holocene climatic transition in the Mediterranean: Causes and consequences. The Holocene 21, 3 (2011).

    ADS  Google Scholar 

  15. McCormick, M. et al. Climate Change during and after the Roman Empire: Reconstructing the Past from Scientific and Historical Evidence. Journal of Interdisciplinary History 2, 169–220 (2012).

    Google Scholar 

  16. Cisneros, M. et al. Sea surface temperature variability in the central-western Mediterranean Sea during the last 2700 years: a multi-proxy and multi-record approach. Climate of the Past 12, 849–869 (2016).

    ADS  Google Scholar 

  17. Neukom, R., Steiger, N., Gómez-Navarro, J.J., Wang, J., Werner, J.P. No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature 571 (2019).

  18. Neukom, R. et al. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. PAGES 2k Consortium. Nature Geosciences 12, 643–649 (2019).

    Google Scholar 

  19. Magny, M. & Combourieu Nebout, N. Holocene changes in environment and climate in the central Mediterranean as reflected by lake and marine records. Climate of the Past 9, 1447–1454 (2013).

    ADS  Google Scholar 

  20. Holmgren, K. et al. Mediterranean Holocene climate, environment and human societies. Quaternary Science Reviews 136, 1–4 (2016).

    ADS  Google Scholar 

  21. Sadori, L. et al. Climate, environment and society in southern Italy during the last 2000 years. A review of the environmental, historical and archaeological evidence. Quaternary Science Reviews 136, 173–188 (2016).

    ADS  Google Scholar 

  22. Büntgen, U. & Tegel, W. European tree-ring data and the Medieval Climate Anomaly. PAGES 19, 14–15 (2011).

  23. Büntgen, U. et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nature Geoscience 9, 231–236 (2016).

    ADS  Google Scholar 

  24. Hodell, D., Brenner, M., Curtis, J. H. & Guilderson, T. Solar forcing of drought frequency in the Maya lowlands. Science 292, 1367–1370 (2001).

    ADS  CAS  PubMed  Google Scholar 

  25. deMenocal, P. B. & Peter, B. Cultural Responses to Climate Change During the Late Holocene. Science 292, 667–673 (2001).

    ADS  CAS  PubMed  Google Scholar 

  26. IPCC, 2018: Summary for Policymakers. In: Global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological Organization, Geneva, Switzerland, 32, V. Masson-Delmotte, et al. (eds.) (2018).

  27. Fischer, H. et al. Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nature Geoscience 11, 474–485 (2018).

    ADS  CAS  Google Scholar 

  28. Faust, J. C., Fabian, K., Milzerc, G., Giraudeau, J. & Kniesa, J. Norwegian fjord sediments reveal NAO related winter temperature and precipitation changes of the past 2800 years. Earth and Planetary Science Letters 435, 84–93 (2016).

    ADS  CAS  Google Scholar 

  29. Pinardi, N. et al. Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis. Progress in Oceanography 132, 318–332 (2015).

    ADS  Google Scholar 

  30. La Violette, P. E. The western Mediterranean circulation experiment (WMCE): introduction. Journal of Geophysical Research 95, 1511–1514 (1990).

    ADS  Google Scholar 

  31. Viudez, A., Tintore, J. & Haney, R. L. Circulation in the Alboran Sea as determined by quasi-synoptic hydrographic observations. Part 1. Three-dimensional structures of the two anticyclonic gyres. Journal of Physical Oceanography 26, 684–705 (1996).

    ADS  Google Scholar 

  32. Viudez, A. & Tintore, J. Time and space variability in the eastern Alboran Sea from March to May 1990. Journal of Geophysical Research 100, 8571–8586 (1995).

    ADS  Google Scholar 

  33. Millot, C. Circulation in the western Mediterranean Sea. Oceanologica Acta 10, 143–149.4 (1987).

    Google Scholar 

  34. Krom M.D., Groom S. & Zohary T. The Eastern Mediterranean — Biogeochemistry of Marine Systems. Blackwell Publishing (2003).

  35. Bethoux, J.-P. Mean water fluxes across sections in the Mediterranean Sea, evaluated on the basis of water and salt budgets and of observed salinities. Oceanologica Acta 3 l, 79–88 (1980).

    Google Scholar 

  36. Robinson, A. R. et al. The Atlantic Ionian Stream. Journal of Marine Systems 20, 129–156 (1999).

    ADS  Google Scholar 

  37. Bèranger, K. et al. The dynamics of the Sicily Strait: A comprehensive study from observations and models. Deep-Sea Research Part II 51, 411–440 (2004).

    ADS  Google Scholar 

  38. Incarbona, A. et al. Holocene millennial-scale productivity variations in the Sicily Channel (Mediterranean Sea). Paleoceanography 23, PA3204 (2008).

    ADS  Google Scholar 

  39. Rodrigo-Gámiz, M., Martínez-Ruiz, F., Rampen, S. W., Schouten, S. & Sinninghe Damsté, J. S. Sea surface Temperature variations in the western Mediterranean Sea over the last 20 kyr: A dual-organic proxy (UK′37 and LDI) approach. Paleoceanography 29, 87–98 (2014).

    ADS  Google Scholar 

  40. Kontakiotis, G. Late Quaternary paleoenvironmental reconstruction and paleoclimatic implications of the Aegean Sea (eastern Mediterranean) based on paleoceanographic indexes and stable isotopes. Quaternary International 401, 28–42 (2016).

    ADS  Google Scholar 

  41. Gogou, A. et al. Climate variability and socio-environmental changes in the northern Aegean (NE Mediterranean) during the last 1500 years. Quaternary Science Reviews 136, 209–228 (2016).

    ADS  Google Scholar 

  42. Ljungqvist, F. C. A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia. Geografiska Annaler Series A: Physical Geography 92A, 339–351 (2010).

    Google Scholar 

  43. Jalali, B. et al. Deltaic and coastal sediments as recorders of Mediterranean regional climate and human impact over the past three millennia. Paleoceanography and Paleoclimatology 33, 579–593 (2018).

    Google Scholar 

  44. Kaniewski, D. et al. Late Second-Early First Millennium BC abrupt climate changes in coastal Syria and their possible significance for the history of the Eastern Mediterranean. Quaternary Research 74, 207–21 (2010).

    ADS  Google Scholar 

  45. Di Rita, F. et al. Late Holocene forest dynamics in the Gulf of Gaeta (central Mediterranean) in relation to NAO variability and human impact. Quaternary Science Reviews 179, 137–152 (2018).

    ADS  Google Scholar 

  46. Di Rita, F. et al. Holocene forest dynamics in central and western Mediterranean: periodicity, spatio-temporal patterns and climate influence. Scientific Reports 8, 8929 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  47. Behringer, W. A Cultural History of Climate. London, Polity Press, ISBN: 9780745645292, (2009).

  48. Weiss, B. The decline of the Late Bronze Age civilization as a possible response to climate change. Climatic Change 4, 173–198 (1982).

    ADS  Google Scholar 

  49. Knapp, B. & Manning, S. W. Crisis in Context: The End of the Late Bronze Age in the Eastern Mediterranean. American Journal of Archaeology 120, 99–149 (2016).

    Google Scholar 

  50. Drake, B. L. The influence of climatic change on the Late Bronze Age Collapse and the Greek Dark Ages. Journal of Archaeological Science 39, 1862–1870 (2012).

    Google Scholar 

  51. Finnè, M. et al. Late Bronze Age climate change and the destruction of the Mycenaean Palace of Nestor at Pylos. PLoS ONE 12(12), e0189447 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. Zolitschka, B., Behre, K. E. & Schneider, J. Human and climate impact on the environmental as derived from colluvial, fluvial and lacustrine archives-examples from the Bronze Age to the Migration period, Germany. Quaternary Science Reviews 22, 81–100 (2003).

    ADS  Google Scholar 

  53. Kotthoff, U. et al. Reconstructing Holocene temperature and salinity variations in the western Baltic Sea region: a multi-proxy comparison from the Little Belt (IODP Expedition 347, Site M0059). Biogeosciences 14, 5607–5632 (2017).

    ADS  CAS  Google Scholar 

  54. Shaw, B.D. Climate, Environment, and History: the Case of Roman North Africa. Chap. 16 [in] T. M. L. Wigley, M. Ingram, and G. Farmer eds., Climate and History: Studies in Past Climates and their Impact on Man. Cambridge University Press, pp. 379-403 (1981).

  55. Mayewski, P. A. et al. Holocene climate variability. Quaternary Research 62, 243–255 (2004).

    ADS  Google Scholar 

  56. Bond, G. et al. Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 2130–2136 (2001).

    ADS  CAS  PubMed  Google Scholar 

  57. Sicre, M. A. et al. A 4500- year reconstruction of sea surface temperature variability at decadal time-scales off North Iceland. Quaternary Science Reviews 27, 2041–2047 (2008).

    ADS  Google Scholar 

  58. DeMenocal, P., Ortiz, J., Guilderson, T. & Sarnthein, M. Coherent high- and lowlatitude climate variability during the Holocene warm period. Science 288, 2198–2202 (2000).

    ADS  CAS  PubMed  Google Scholar 

  59. PAGES 2K Consortium. Continental-scale temperature variability during the past two millennia. Nature 6, 339–346 (2013).

    Google Scholar 

  60. Pujol, C. & Vergnaud Grazzini, C. Distribution patterns of live planktic foraminifers as related to regional hydrography and productive systems of the Mediterranean Sea. Marine Micropaleontology 25, 187–217 (1995).

    ADS  Google Scholar 

  61. Català, A., Cacho, I., Frigola, J., Pena, L. D. & Lirer, F. Holocene hydrography evolution in the Alboran Sea: a multi-record and multi-proxy comparison. Climate of the Past 15, 927–942 (2019).

    ADS  Google Scholar 

  62. Harper, K. The Fate of Rome, Climate, Disease, and the End of an Empire. The Princeton History of the Ancient World Series. Princeton: Princeton University Press (2019).

  63. Noti, R. et al. Mid- and late-holocene vegetation and fire history at Biviere di Gela, a coastal lake in southern Sicily, italy. Vegetation History and Archaeobotany 18, 371–387 (2009).

    Google Scholar 

  64. Bisculm, M. et al. Holocene vegetation and fire dynamics in the supra-mediterranean belt of the Nebrodi Mountains (Sicily, Italy). Journal of Quaternary Science 27, 687–698 (2012).

    ADS  Google Scholar 

  65. Di Rita, F. D. & Magri, D. An overview of the Holocene vegetation history from the central Mediterranean coasts. Journal of Mediterranean Earth Science 4, 35–52 (2012).

    Google Scholar 

  66. Gibbon, E. The History of the Decline and Fall of the Roman Empire. Strahan & Cadell, London (1776).

  67. Momigliano, A. La caduta senza rumore. Ed. scientifiche italiane, Italy (1973).

  68. Lamb, H.H. Climate: Present, Past and Future vol. 2. Methuen & Co, London (1977).

  69. Jones, P., Mann, D. & Mann, M. E. Climate over past millennia. Reviews of Geophysics 42, RG2002 (2004).

    ADS  Google Scholar 

  70. Mann, M. E. et al. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 1256–1260 (2009).

    ADS  CAS  PubMed  Google Scholar 

  71. Piva, A., Asioli, A., Trincardi, F., Schneider, R. R. & Vigliotti, L. Late Holocene climate variability in the Adriatic Sea (Central Mediterranean). The Holocene 18, 153–167 (2008).

    ADS  Google Scholar 

  72. Incarbona, A. et al. The Impact of the Little Ice Age on Coccolithophores in the Central Mediterranea Sea. Climate of the Past 6, 795–805 (2010).

    ADS  Google Scholar 

  73. Sicre, M. A. et al. Sea surface temperature variability in the North Western Mediterranean Sea (Gulf of Lion) during the Common Era. Earth and Planetary Science Letters 456, 124–133 (2016).

    ADS  CAS  Google Scholar 

  74. Marullo, S., Artale, V. & Santoleri, R. The SST Multidecadal Variability in the Atlantic–Mediterranean Region and Its Relation to AMO. Journal of Climate 24, 4385–4401 (2011).

    ADS  Google Scholar 

  75. Versteegh, G. J. M., de Leeuw, J. W., Taricco, C. & Romero, A. Temperature and productivity influences on U37 K0 and their possible relation to solar forcing of the Mediterranean winter. Geochem. Geophys. Geosyst. 8, Q09005 (2007).

    ADS  Google Scholar 

  76. Incarbona, A. et al. Mediterranean circulation perturbations over the last five centuries: Relevance to past Eastern Mediterranean Transient-type events. Scientific Reports 6, 29623 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pena, L. D., Calvo, E., Cacho, I., Eggins, S. & Pelejero, C. Identification and removal of Mn-Mg-rich contaminant phases on foraminiferal tests: implications for Mg/Ca past temperature reconstructions. Geochemistry Geophysics Geosystems 6, Q09P02 (2005).

    Google Scholar 

  78. Barker, S., Cacho, I., Benway, H. & Tachikawa, K. Planktonic foraminiferal Mg/Ca as a proxy for past oceanic temperatures: A methodological overview and data compilation for the Last Glacial Maximum. Quaternary Science Reviews 24, 821–834 (2005).

    ADS  Google Scholar 

  79. Lea, D. W., Pak, D. K. & Spero, H. J. Climate impact of late Quaternary equatorial Pacific sea surface temperature variations. Science 289(5485), 1719–1724 (2000).

    ADS  CAS  PubMed  Google Scholar 

  80. Pena, L. D. et al. Characterization of contaminant phases in foraminifera carbonates by electron microprobe mapping. Geochemistry, Geophysics, Geosystems 9, Q07012 (2008).

    ADS  Google Scholar 

  81. Elderfield, H. & Ganssen, G. Past temperature and 18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature 405, 442–445 (2000).

    ADS  CAS  PubMed  Google Scholar 

  82. Boyer, T. & Mishonov, A. World Ocean Atlas 2013 Product Documentation (2013).

  83. Mallo, M., Ziveri, P., Mortyn, P. G., Schiebel, R. & Grelaud, M. Low planktic foraminiferal diversity and abundance observed in a spring 2013 west–east Mediterranean Sea plankton tow transect. Biogeosciences 14, 2245–2266 (2017).

    ADS  CAS  Google Scholar 

  84. Ferguson, J. E., Henderson, G. M., Kucera, M. & Rickaby, R. E. M. Systematic change of foraminiferal Mg/Ca ratios across a strong salinity gradient. Earth and Planetary Science Letters 265, 153–166 (2008).

    ADS  CAS  Google Scholar 

  85. Hoogakker, B. A. A., Klinkhammer, G. P., Elderfield, H., Rohling, E. J. & Chris Hayward, C. Mg/Ca paleothermometry in high salinity environments. Earth and Planetary Science Letters 284, 583–589 (2009).

    ADS  CAS  Google Scholar 

  86. van Raden, U. J., Groeneveld, J., Raitzsch, M. & Kucera, M. Mg/Ca in the planktonic foraminifera Globorotalia inflata and Globigerinoides bulloides from Western Mediterranean plankton tow and core top samples. Marine Micropaleontology 78(3-4), 101–112 (2011).

    ADS  Google Scholar 

  87. Hönisch, B. et al. The influence of salinity on Mg/Ca in planktic foraminifers – Evidence from cultures, core-top sediments and complementary d18O. Geochimica et Cosmochimica Acta 121, 196–213 (2013).

    ADS  Google Scholar 

  88. Bellucci, L. G. et al. 210Pb and 137Cs as chronometers for salt marsh accretion in the Venice Lagoon — links to flooding frequency and climate change. Journal of Environmental Radioactivity 97, 85–102 (2007).

    CAS  PubMed  Google Scholar 

  89. Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4), 1869–1887 (2013).

    CAS  Google Scholar 

  90. Blaauw, M. & Christen, J. A. Flexible Paleoclimate Age-Depth Models Using an Autoregressive Gamma Process. Bayesian. Analysis 6(3), 457–474 (2011).

    MathSciNet  MATH  Google Scholar 

  91. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria., https://www.R-project.org/ (2019).

  92. Martínez-Boti, M. A. et al. Boron isotope evidence foroceanic carbon dioxide leakage during the last deglaciation. Nature 518, 49–54 (2015).

    ADS  PubMed  Google Scholar 

  93. Cleveland, W.S., Grosse, E. & Shyu, W.M. Local regression models. Chapter 8 of Statistical Models in S eds J.M. Chambers and T.J. Hastie, Wadsworth & Brooks/Cole (1992).

  94. Wang, X,F. fANCOVA: Nonparametric Analysis of Covariance. R package version 0.5-1, https://CRAN.R-project.org/package=fANCOVA (2010).

  95. Correa-Metrio, A., Urrego, D.H., Kenneth, R. Cabrera and Mark B. Bush. paleoMAS: Paleoecological Analysis. R package version 2.0-1. (2012).


Page 2

(a) Bathymetric map of the central-western Mediterranean Sea. The background map is the GEBCO global terrain model for ocean and land (15 arc-second intervals, World Geodetic System, WGS-84 datum; https://www.gebco.net/). Red triangle: location of SW104-ND11 core; red circles: marine records used for the comparison. (b) Bathymetric map of the Sicily Channel has been generated using Ocean Data View according to the reference reported in http://odv.awi.de showing surface oceanographic circulation and core location. Black lines follow the path of surface water circulation. Major currents are illustrated. AC, Atlantic Current; SSTC, Sicily Strait Tunisian Current; AIS, Atlantic Ionian Stream. ABV, Adventure Bank Vortex; ISV, Ionian Shelfbreak Vortex; MDC, Middle Tyrrhenian Current29. Red triangle: location of SW104-ND11 core. (c) Profiles of selected physical seawater parameters (salinity and temperature) from study core SW104-ND11 in July 2014. The vertical dotted lines on the temperature plot represent the range of temperature values represented by the Mg/CaG.ruber record for the SW104-ND11 core.